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In this paper, we develop a classical electrodynamic theory to study the optical nonlinearities of metallic
nanoparticles. The quasi free electrons inside the metal are approximated as a classical Coulomb-interacting
electron gas, and their motion under the excitation of an external electromagnetic field is described by the
plasma equations. This theory is further tailored to study second-harmonic generation. Through detailed
experiment-theory comparisons, we validate this classical theory as well as the associated numerical algorithm.
It is demonstrated that our theory not only provides qualitative agreement with experiments but it also repro-
duces the overall strength of the experimentally observed second-harmonic signals.

DOI: 10.1103/PhysRevB.79.235109 PACS number�s�: 42.70.�a, 52.35.Mw

I. INTRODUCTION

Optical second-harmonic generation �SHG� from a metal
�silver� surface was first observed in 1965,1 4 years after the
first observation of SHG from quartz in 1961.2 In the follow-
ing 50 years, a number of important features of SHG from
metallic surfaces have been founded such as �1� second-
harmonic �SH� intensities can be enhanced more than 1 order
of magnitude by coupling incident light into surface polar-
iton resonances at metal surfaces;3 �2� SHG from surfaces of
centrosymmetric metals is anisotropic, the strength of the SH
response thus depends on the relative orientation of the inci-
dent field and the crystal axes;4,5 �3� because of the local-
field enhancement, SHG is very sensitive to surface rough-
ness and chemical processes such as adsorption and
electrochemical reactions.6,7 On the theoretical side, different
approaches on both phenomenological and microscopic lev-
els have been developed to analyze SH response from
metals,8 such as classical Boltzman equation approach,9 hy-
drodynamic model,10–15 phenomenological formalism in
terms of the fundamental tensor elements of the SH
susceptibility,5,6,16–22 and the self-consistent density-
functional formalism �see Refs. 23 and 24 and the cited
references�.

Recently, a renaissance of scientific interests appears in
the quadratic nonlinearities of metallic nanostructures and
nanoparticles �NPs� partially owing to the significant local-
izations of electromagnetic �EM� field induced by the plas-
monic oscillations of the conduction electrons inside the
metal.25–47 More specifically, SHGs were experimentally ob-
served from different geometric configurations such as sharp
metal tips,28,32 periodic nanostructured metal films,29 imper-
fect spheres,31,35 split-ring resonators34,40 and their comple-
mentary counterparts,42 metallodielectric multilayer
photonic-band-gap structures,41 T-shaped40 and L-shaped
NPs,38,43 noncentrosymmetric T-shaped nanodimers,39,46 and
“fishnet” structures.44

It should be emphasized that these subwavelength NPs
and one-dimensional interfaces have different structural sym-
metries, and these differences further lead to significant con-
sequences. For ideally infinite interfaces, the dominant SH
dipole source appears only at the interface between cen-

trosymmetric media where the inversion symmetry is bro-
ken, although higher-order multipole sources provide a rela-
tively small bulk SH polarization density. The SH
polarization density is thus significantly localized in a sur-
face region a few Angstrom wide and sensitively influenced
by the details of the surface electronic structure. On the other
hand, for low-symmetric or even asymmetric NPs, such as
gold split-ring resonators, SH dipolar polarizability may be
presented in the whole volume and not limited at the
interface.48 Consequently, the overall shape of the NP plays a
significant role in determining the SH response. To analyze
the quadratic nonlinearities of these metallic NPs, we, there-
fore, propose that complicated microscopic models of the
interfaces are not required, and an easy-to-implement classi-
cal model is sufficient.

The paper is organized as follows. Section II presents a
classical electrodynamic model which describes the nonlin-
earities induced by Coulomb-interacting electron gas in met-
als. Using small nonlinearity approximation, this classical
model is further tailored in Sec. III to treat second-order
generation. Section IV gives a detailed comparison between
theoretical results and the corresponding experiments. Dis-
cussion, conclusion, and acknowledgement are presented in
Sec. V.

II. CLASSICAL ELECTRODYNAMIC MODEL

In our model, the motion of quasi free electrons inside a
metal is described classically. Quantum-mechanical Cou-
lomb correlations and exchange contributions are thus miss-
ing while the classical Coulomb interaction �i.e., the Hartree
term in a quantum-mechanical derivation� is fully included.49

Furthermore, the Coulomb scattering due to higher-order
quantum corrections is phenomenologically described via an
inverse decay time �=1 /�. The electrons inside the metal are
described via their number density ne and velocity ue. In our
classical model, these quantities are continuous functions of
position r and time t.50–53 We further assume that the mass of
ions are infinite. Consequently, the ionic density n0�r� is time
independent and only the electrons can move and contribute
to the current density. In other words, an infinite barrier sur-
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face potential is assumed and n0�r� is constant within the
metal and zero outside the metal.

We begin with two equations for electronic number den-
sity ne�r , t� and the velocity field ue�r�,

�ne

�t
+ � · �neue� = 0, �1�

me� �

�t
+ ue · ��ue = − e�E + ue � B� . �2�

Here, the first equation is the usual continuity equation ex-
pressed in terms of carrier density instead of charge density.
The second equation is the generalization of Newton’s equa-
tion to the case of a continuous field. The term in brackets on
the left-hand side is the so-called convective or material de-
rivative, which is a result of the description of electrons in
terms of a continuous density and can be formally derived
from the quantum-mechanical Wigner distribution.49 More
intuitively, it can be understood as the time derivative of an
electron taken with respect to a coordinate system which is
itself moving with velocity ue�r�t� , t�, given by51

due

dt
=

�ue

�t
+ �dr�t�

dt
· ��ue = � �

�t
+ ue · ��ue. �3�

To describe the interaction between the classical electron
gas and the external EM fields self-consistently, we couple
Eqs. �1� and �2� to Maxwell’s equations by defining the
charge density and the current density

��r,t� = e�n0�r� − ne�r,t�� , �4�

j�r,t� = − ene�r,t�ue�r,t� = ���r,t� − en0�r��ue�r,t� , �5�

in terms of the electronic number density and velocity field.
Using these definitions and the equations of motion, Eqs. �1�
and �2�, we achieve

��

�t
= − � · j , �6�

�j

�t
= 	

k

�

�rk
� jjk

en0 − �
� +

e2n0

me
E −

e

me
��E + j � B� − �j ,

�7�

where we have added a phenomenological term −�j to de-
scribe the current decay due to Coulomb scattering. The Lor-
entz force describes a change in momentum due to an ap-
plied force. The first term on the right-hand side, resulting
from the convective derivative, describes an increase or de-
crease in momentum simply due to an accumulation or
depletion of electrons at a certain spatial point.

Equations �6� and �7� have to be coupled to Maxwell’s
equations. The final full set of equations to be solved by a
numerical scheme read as

�B

�t
= − � � E , �8�

�E

�t
= c2 � � B −

1

�0
j , �9�

�j

�t
=

e2n0

me
E − �j + 	

k

�

�rk
� jjk

en0 − �
� −

e

me
��E + j � B� ,

�10�

where the charge density � has to be viewed as a function of
the electric field since each occurrence of � can be replaced
by the relation

� = �0 � · E . �11�

This set of equations couples the dynamics of the EM field to
the dynamics of the carriers described by their current den-
sity j. It should be mentioned that Eq. �10� contains rich
physics. The first two terms represent the linear collective
oscillation of the electrons with respect to the background
ionic density n0�r�, and the last two terms introduce three
distinct sources for nonlinearities of the plasma. The second
and third sources are the well-known electric and magnetic
components of the Lorentz force, respectively. The first
source term is a generalized divergence originating from the
convective-time derivative of the electron-velocity field ue
mentioned above.

III. PERTURBATIVE EXPANSION OF NONLINEARITIES

In order to obtain a simplified set of equations more suit-
able for a numerical approach, we expand every quantity in a
power series of the peak electric-field amplitude 
Eexc
 of the
excitation pulse. Formally, we can write

E�r,t� = 	
j

E�j��r,t� , �12�

B�r,t� = 	
j

B�j��r,t� , �13�

j�r,t� = 	
j

j�j��r,t� , �14�

where the functions E�j�, B�j�, and j�j� scale like 
Eexc
 j. A
similar expansion automatically holds for the charge density
by inserting Eq. �12� into Eq. �11�,

��r,t� = �0	
j

� · E�j��r,t� . �15�

Separating different orders, we obtain the linear response
of the metal via

�B�1�

�t
= − � � E�1�, �16�

�E�1�

�t
= c2 � � B�1� −

1

�0
j�1�, �17�
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�j�1�

�t
= − �j�1� +

e2n0

me
E�1�. �18�

This is equivalent to the well-known Drude model of a metal
whose bulk plasma frequency �p

2 =e2n0 /me�0, as can be eas-
ily seen by Fourier transformation.54

The second-order fields describe the lowest-order nonlin-
earity of the metal and are given by

�B�2�

�t
= − � � E�2�, �19�

�E�2�

�t
= c2 � � B�2� −

1

�0
j�2�, �20�

�j�2�

�t
= − �j�2� +

e2n0

me
E�2� + S�2�, �21�

together with the nonlinear source term

S�2� = 	
k

�

�rk
� j�1�jk

�1�

en0
� −

e

me
��0�� · E�1��E�1� + j�1� � B�1�� ,

�22�

where k represents the x, y, and z coordinates. The homoge-
neous part of this set of equations is identical to the first-
order equations such that the propagation of the SH field is
modified by the Drude response of the metal. The source
term is expressed fully in terms of the first-order fields such
that the sets of Eqs. �16�–�22� can be solved separately.

We want to stress that no approximations have been done
yet except the expansion in orders of the exciting electric
field. All fields are real quantities and no expansion in terms
of “phase factor times slowly varying envelop” �see Appen-
dixes A and B� has been done so far. In principle, these
equations can be numerically solved, and a switch-off analy-
sis can be further utilized to distinguish the contribution of
three nonlinear sources.

A three-dimensional finite-difference time-domain
�FDTD� algorithm is employed to numerically solve the
first-order and second-order equations separately.55 Yee’s dis-
cretization scheme is employed so that all field variables are
defined in a cubic grid. Electric and magnetic fields are tem-
porally separated by half a time step, they are also spatially
interlaced by half a grid cell. Central differences in both
space and time are then applied to Eqs. �16�–�22�.56 In addi-
tion, all the NPs studied are made of gold with Drude-type
permittivity approximated as

���� = 1.0 −
�p

2

��� + i��
, �23�

with the bulk plasma frequency �p=1.367�1016 s−1 and the
phenomenological collision frequency �=6.478�1013 s−1

�Refs. 34, 42, and 57� �please notice that we employ �p, and
not n0, in the simulations�. In order to describe the energy-
conversion efficiency in the nonlinear-optical process, we de-
fine a normalized SH intensity,

� = 
E�2��2�0�/E�1���0�
2, �24�

to measure the strength of the far-field SH signal, where �0
is the frequency of the incident fundamental-frequency �FF�
wave.

Our interests in the present paper are limited to arrays of
metallic NPs �also named as planar metamaterial34,40,44� with
normal incidence, the computational domain is, therefore,
arranged as follows: an array of NPs is placed in the middle
of the space with its top and bottom surfaces positioned per-
pendicular to the z direction; plane waves propagating along
the z axis are generated by a total field/scattering field
technique;55 perfect matched absorbing boundary conditions
are applied at the top and bottom of the computational space
together with periodic boundary conditions on other
boundaries;58 the structure studied extends periodically in the
x and y directions, and only single unit cell is needed in the
computational space. In addition, in all the following simu-
lations, the size of the spatial grid cell is fixed as 2.5 nm, and
the associate time step is 4.17 as.

IV. THEORY-EXPERIMENT COMPARISON

In this section detailed comparisons between the numeri-
cal evaluations of our theory with the experiments did in two
independent laboratories are presented.34,39,40,42 First, we
consider a series of experiments reported in Refs. 34, 40, and
42, in which NPs with different geometrical configurations
are studied �see Fig. 1�. Among them the U-shaped NPs
�split-ring resonators� are known to possess negative effec-
tive permeabilities in certain frequency regions and are gen-
erally referred to as magnetic metamaterials.34,59–62 Strictly
speaking, those “metamaterials” are only the first step toward
a true three-dimensional bulk material. So far, most of the
metamaterials are rather two-dimensional arrays of unit cells
to study the fundamental properties of the NPs. These
samples are supported by infinite-thickness glass �with �
=2.25� substrate coated with a thin film of indium-tin-oxide
�with �=3.8�, and the thicknesses of the gold and indium-tin-
oxide layers are 25 and 5 nm, respectively.34,40,42 It should be
emphasized that the geometrical parameters of these NPs are
chosen such that each structure has a resonance around 1500
nm wavelength.

Our theoretical results are summarized in Fig. 1. We note
that the simulations qualitatively agree with the correspond-
ing experimental measurements. The SH signal strength
emitted from the U-shaped particles with the x-polarized FF
incidence is found as 6.6�10−11 from the simulation, which
is quite close to the experimental result of 2.0�10−11 �Ref.
40� �please notice that the SH strength reported in Ref. 40
has been corrected in the sequent erratum�. Our simulation
thus reproduces the strength of the experimental SH signal.
The following important conclusions can be further extracted
from Fig. 1:

�1� The polarization state of the far-field SH signal is al-
ways y polarized �Fig. 2� for both the x-polarized or
y-polarized incident fields �except the rectangle-shaped
NPs�. There, thus, exists a universal selection rule, that is, a
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FIG. 1. �Color online� Comparisons of numerical simulations and experiments for different arrays of gold nanoparticles. The different
columns �from left to right� show shape of nanoparticles, the polarization of the incident light �indicated by the arrows�, the linear
transmission �solid� and reflection �dashed� spectra, theoretical SHG spectra �amplified 13 orders of magnitude�, the relative strengths
obtained by the theory, and the corresponding experiments �inside brackets�. For all the structures, the polarization of the generated
second-harmonic waves is along the y direction. The illuminating fundamental-frequency wave has a wavelength around 1500 nm and
amplitude of 2�107 �V /m�. �a� The U-shaped particle corresponds to the experimental sample shown in Fig. �1a� of Ref. 34 �also at Fig.
�1a� of Ref. 40� with lattice constant ax=ay =305 nm. �b� The C-shaped particle corresponds to the experimental sample shown in Fig. �1c�
of Ref. 34 �also at Fig. �1c� of Ref. 40� with ax=567.5 nm and ay =590 nm. �c� The inverse-U-shaped particle corresponds to the
experimental sample shown in Ref. 42, with ax=ay =305 nm. �d� The T-shaped particle corresponds to the experimental sample shown in
Fig. �2c� of Ref. 40, with ax=295 nm and ay =465 nm. �e� The rectangle-shaped corresponds to the experimental sample shown in Fig. �2b�
of Ref. 40. Here ax and ay are the lattice constants along the x and y directions, respectively. All nanoparticle dimensions shown are in nm.
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mirror symmetry of the metallic NPs in one direction com-
pletely prohibits a polarization component of SHG in that
direction. This symmetry dependence can be explained as
follows. Within the electric dipole approximation, the far-
field SH electric field can be related to the incident FF field
such that50,52

E�2�� = 	J�2� · E���E��� , �25�

where 	J�2� stands for a generalized dyadic second-order non-
linear susceptibility. The x-coordinate mirror symmetry re-
sults in the following vanishing elements: 	xxx

�2� , 	xyy
�2� , 	yxy

�2� ,
and 	yyx

�2� . Further representing the FF field as E�z ,��
=E0ei��t−kz��cos 
ex+sin 
ey�, with k=� /c being the wave
number, 
 being the polarization angle, and ex �ey� being the
unit vector along the x �y� direction, we obtain

Ex�2�� = E0
2	xxy

�2� sin 2
 ,

Ey�2�� = E0
2�	yxx

�2� cos2 
 + 	yyy
�2� sin2 
� . �26�

The Ex�2�� component is simply proportional to sin 2
, and
therefore vanishes for 
=0 or 
=� /2, corresponding to the
x- or y-polarized FF incidence. On the other hand, the rela-
tionship between Ey�2�� and 
 is nontrivial, and it survives
for 
=0 and 
=� /2.

�2� Similar to the fact that SHG at metal surfaces can be
significantly enhanced by coupling incident light into surface
polariton resonances,8 the presence of structural plasmonic
resonances can also greatly enhance SHG from metallic NPs.
Moreover, different-order plasmonic resonances make differ-
ent contributions to the SHG. For example, an enlarged ver-
sion of the U-shaped NP from Fig. 1�a� possesses a second-
order resonance coincident with the fundamental resonance

of the original. The SHG emitting from the fundamental
resonance of the original U is considerably stronger than the
SHG from the second-order resonance of the larger structure,
even without the perfect phase matching requirement, be-
cause the near-field enhancement is maximized for the fun-
damental resonance.25,53,63,64

�3� It is found in the simulation that no SH signal is emit-
ted from the rectangle-shaped NPs in the far field. As stated
earlier, this is a direct consequence of the fact that an indi-
vidual rectangle-shaped NP possesses mirror symmetries
along both x and y directions. A dipole SH source is, there-
fore, forbidden and only quadrupole sources �and higher-
order multipoles� are allowed �the retardation effects are neg-
ligible here since the thicknesses of NPs are much smaller
than the SH wavelength, while these effects are found to
excite nonlocal SH dipole for large-size gold nanospheres31�.
For a periodic array of rectangle-shaped NPs with transla-
tional symmetry, the SH signal from each individual NP in-
terferes destructively. Therefore, only near-field SH signal
exists for the array. However, slight far-field SH signal is
observed in the experiment. This deviation is believed to
originate from the fact that the samples are not rigorously
inversion symmetry because of the fabrication imperfections
�see the scanning electron micrograph shown in Ref. 40�.

Next we study the effect of the gap on the far-field SH
strength in noncentrosymmetric T-shaped gold nanodimers
�Fig. 3�. The corresponding experiment is reported in Ref.
39, and the scanning electron micrograph images of two
dimers are shown in Fig. 3. Obviously, these T-shaped
dimers do not possess any mirror symmetry along either x or
y direction. The gold array is 20 nm thick with a lattice
spacing of 400 nm. It is further covered with a 20 nm pro-
tective layer of glass and supported with an infinite-thickness
glass substrate.

To include the relative difference between the configura-
tions of the samples, the NPs �for all gaps� employed in our
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FIG. 2. �Color online� The polarization state of the second-
harmonic emission from an array of U-shaped particles illuminated
with a x-polarized plane wave at the fundamental frequency. The
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the polarization of the incident field� 
 �
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direction�. The corresponding experiment measurement is shown in
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FIG. 3. �Color online� Second-harmonic generation in noncen-
trosymmetric nanodimers with varying gaps. The configuration
such as YXX indicates y-polarized second-harmonic signal with
x-polarized fundamental field. The two images show the unit cells
as simulated containing two structures which were digitized from
the scanning electron micrograph images of the experimental
samples �Ref. 39�. The corresponding experimental results are re-
ported in Ref. 39 �Figs. 1 and 3�.
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simulations are obtained by directly scanning the experimen-
tal samples, and the computational cell consists of two
T-shaped dimers. Our numerical results are plotted in Fig. 3
and reproduce the experimental observations qualitatively.
More specifically, the SHG for two configurations, YXX
�y-polarized SH signal with x-polarized fundamental fields�
and YYY �y-polarized SH signal with y-polarized fundamen-
tal fields�, strongly depend on the size of the gap in a non-
monotonically decreasing fashion. The 40 nm gap yields
weak SHG responses for both configurations and the largest
SHG response occurs for YXX from the 2 nm gap. For gaps
smaller than 15 nm, the YYY response is much weaker than
the YXX response. On the other hand, in a simulation of ideal
structures, without the geometrical variation in the dimers
induced by the fabrication imperfections, the YXX response
decreases monotonically with increasing gap. The nonmono-
tonic responses observed in the experiments thus arise from
two sources, the near-field enhancement around the NPs de-
creases with increasing the gap and variations in the overall
shape of different-gap nanodimers due to the fabrication im-
perfections.

V. DISCUSSION AND CONCLUSIONS

The experiment-theory agreement presented above sug-
gests that in contrast to an ideally infinite interface whose SH
response strongly localizes in its surface region, the overall
shape of the NP plays an important or even dominant role in
determining efficient SH emission.48 Hence, even without an
accurate description of the surface electrons, our classical
model can not only successfully reproduce the experimental
observations qualitatively, but also reproduce the SH inten-
sities.

It should be mentioned that Schaich65 developed an ap-
proach quite similar to ours to study SHG by periodically
structured metal surfaces. The major difference is that ana-
lytical parametrizations of SHG at the �top� interface of a
thick metal slab24,66–68 are taken by assuming the parametri-
zation scheme still works, even when the flat metal surfaces
are not of infinite extent but have edges and corners. How-
ever, the validation of this assumption is unclear, especially
for subwavelength objects where the separation between two
neighboring edges may only be tens of nanometers and rapid
variations in the parametrizations are, therefore, expected.
Furthermore, this parametrization scheme limits the applica-
tion of his approach for NP with complicated boundaries
such as the nanodimers studied above as well as NPs with
thin thicknesses. In addition, there are some generalized the-
oretical works regarding nonlinear metamaterials69,70 and the
nonlinear properties of negative-index metamaterials.71,72

We want to point out that our classical model contains
only the influence of the conduction electrons and neglects
contributions from other sources such as core electrons and
lattice phonons. It therefore, for example, cannot correctly
describe third-order nonlinearities where the electronic polar-
ization is negligible comparing with other effects such as
saturated atomic absorption.52 To include the third-order
nonlinearities, we need to add another current term

jc�t� = 	�3� d

dt

E
2E , �27�

where 	�3� is the third-order nonlinear susceptibility, which
equals 7.56�10−19 m2 /V2 for gold.53 The new set of equa-
tions has been utilized to study third-harmonic generation
from the NPs reported in Ref. 40. It was demonstrated �see
Appendix B� that our simulations not only reproduce the
overall strength of the experimentally observed third har-
monic signals but also qualitatively reproduce the structure-
dependent changes. As expected, we found the third-
harmonic strength to be closely related to the localization
degree of the FF field inside the metal.

In conclusion, a classical theory of second-harmonic gen-
eration from metallic nanoparticles is presented. The
conductor-band electrons inside the metal are approximated
as a classical continuous plasmonic fluid, and its dynamics
under an external electromagnetic field are described by the
plasma-wave equations self-consistently. A three-
dimensional finite-difference time-domain approach is fur-
ther applied to solve these equations numerically. By com-
paring theoretical results directly with the corresponding
experiments, it is demonstrated that our classical theory, even
without an accurate treatment of the surface electrons, quali-
tatively captures the dominant physical mechanisms of
second-harmonic generations from metallic nanoparticles.
This agreement suggests that the second-harmonic emission
from nanoparticles depends strongly on their overall configu-
rations.
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APPENDIX A: APPROXIMATION FOR
QUASIMONOCHROMATIC EXCITATION

For a quasimonochromatic pulse with central angular fre-
quency �0, one can classify the different contributions in
terms of their complex phase factor. For example, the linear
electric field is given by

E�1��r,t� = �Ẽ�1��r,t�e−i�0t + c.c.� �A1�

with the slowly varying complex field Ẽ�1�, while the second-
order field

E�2��r,t� = Ẽ0
�2��r,t� + �Ẽ2

�2��r,t�e−i2�0t + c.c.� �A2�

has a second-harmonic contribution proportional to the phase
factor e−i2�0t multiplied with the slowly varying complex
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amplitude Ẽ2
�2� as well as a slowly varying low-frequency

part Ẽ0
�2�. The magnetic field and the current can be expanded

in a similar way.
As a next step, we want to express the source term from

Eq. �22� solely in terms of the linear electric field. To that
aim, we use the linear Eqs. �16� and �18� with the quasimo-
nochromatic approximation of Eq. �A1� and obtain

i�0B̃�1� = � � Ẽ�1� ⇒ B̃�1� = −
i

�0
� � Ẽ�1�, �A3�

− i�0j̃�1� = − �j̃�1� +
e2n0

me
Ẽ�1� ⇒ j̃�1� =

i

�0 + i�

e2n0

me
Ẽ�1�,

�A4�

where we have matched the terms with equal phase factor
e−i�0t.

Since every contribution to S�2� in Eq. �22� is of the form
of a product A�1�B�1� between two first-order terms, these
products according to Eq. �A1� can be expressed as

A�1�B�1� = �Ã�1� exp−i�0t + c.c.��B̃�1� exp−i�0t + c.c.�

= �Ã�1�B̃�1� exp−i2�0t + c.c.� + �Ã�1��B̃�1��� + c.c.� .

�A5�

Thus, for the SH source S̃2
�2�, only the products of the slowly

varying complex fields have to be calculated. They can be
computed term by term and in the limit �=0 the first contri-
bution from the convective term is given by

S̃2
�2�
conv = 	

k

�

�rk

j̃1 j̃1,k

en0

= −
e

me

�0

�0
2 ���pl

2 Ẽ�1� · ��Ẽ�1� + Ẽ�1��� · ��pl
2 Ẽ�1���� ,

�A6�

where the plasma frequency is defined as �pl
2 �r�

=e2n0�r� / �me�0�. The second term of Eq. �22�—the electric
Lorentz force—is already expressed solely in terms of the
electric field and the third magnetic term can be written as

S̃2
�2�
magn = −

e

me
j̃�1� � B̃�1�

=
e

me

�0

�0
2�pl

2 ��Ẽ�1� · ��Ẽ�1� −
1

2
� �Ẽ�1� · Ẽ�1��� .

�A7�

Adding up all three contributions to the complex SH source

term S̃2
�2� is then given by

S̃2
�2� = −

e

me

�0

�0
2�Ẽ�1��� · ��pl

2 Ẽ�1��� + �0
2Ẽ�1��� · Ẽ�1��

+
�pl

2

2
� �Ẽ�1� · Ẽ�1��� . �A8�

Furthermore, from the first-order wave equation, we find that

� · Ẽ�1� =
1

�0
2 � · ��pl

2 Ẽ�1�� , �A9�

such that the SH source can be accordingly simplified to

S̃2
�2� = −

e�0

me
�2Ẽ�1��� · Ẽ�1�� +

1

2

�pl
2

�0
2 � �Ẽ�1� · Ẽ�1��� .

�A10�

In a similar fashion, also the low-frequency source S̃0
�2� can

be derived. Repeating analogous steps for the second term of
Eq. �A5� we obtain

S̃0
�2� =

e�0

me

�pl
2

�0
2 � 
Ẽ�1�
2, �A11�

which is the well-known ponderomotive force.
In order to insert the nonlinear source into the differential

equation for j�2�, Eq. �21�, we have to express the total real
source in terms of the slowly varying complex amplitudes,

S�2� = S̃0
�2� + �S̃2

�2�e−i2�0t + c.c.�

=
e�0

me

�pl
2

�0
2 � 
Ẽ�1�
2 −

e�0

me

�
�2Ẽ�1��� · Ẽ�1�� +
1

2

�pl
2

�0
2 � �Ẽ�1� · Ẽ�1���

�e−i2�0t + c.c.� . �A12�

This result cannot be expressed by the real linear electric
field for all frequencies. But since we are most interested in
the second-harmonic generation, we can approximate the
source by

S�2�
SHG � −
e�0

me
�2E�1��� · E�1�� +

1

2

�pl
2

�0
2 � 
E�1�
2� ,

�A13�

where E�1� is again the full, fast oscillating, and real-valued
electric field obtained by the set of Eqs. �16�–�18�. By insert-
ing the expansion from Eq. �A1� into Eq. �A13� it can be
easily shown that the second-harmonic contribution of Eq.
�A12� is exactly reproduced while the low-frequency contri-
bution of Eq. �A13� is different from that of Eq. �A12�.73

To numerically solve the j2 equation with the FDTD ap-
proach, Eqs. �19�–�21� with the source given by Eq. �A13�
have to be solved. Technically, the current is split into three
different contributions according to

�jA
�2�

�t
= − �jA

�2� +
e2n0

me
E�2�, �A14�

�jB
�2�

�t
= − �jB

�2� − 2
e�0

me
E�1��� · E�1�� , �A15�
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�jC
�2�

�t
= − �jC

�2� −
e�0

me

1

2

�pl
2

�0
2 � 
E�1�
2, �A16�

where the sum of j= jA+ jB+ jC defines the total current.

APPENDIX B: NUMERICAL RESULTS OF
THIRD-HARMONIC GENERATION

Third-harmonic generation from the samples described in
Ref. 40 is numerically simulated, and the obtained results are
listed in Table I. We see that our simulations reproduce the
overall strength of the experimentally observed third-
harmonic signals and qualitatively reproduce the structure-
dependent changes. As expected, we find the third-harmonic
strength to be closely related to the localization degree of the
fundamental field inside the metal. In addition, although the
strengths of second-harmonic and third-harmonic signals are

comparable,74 almost negligible interactions are observed in
our simulations. Second-harmonic generation and third-
harmonic generation from metallic nanoparticles can be,
therefore, studied separately.
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